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Introduction. I take my inspiration from an article in this week’s issue of Science
News (Vol. 166, No. 14) that summarized recent progress toward solution of
the sphere packing and sphere kissing problems in N -dimensions. It is
some very simple aspects of the kissing problem that will concern me here.

The maximal number of unit spheres that can simultaneously kiss a central
unit sphere is a dimension-dependent integer—call it k(N). Trivially k(1) = 2,
while by a famous construction (Figure 1) k(2) = 6. The description of k(N)

Figure 1: This simplest instance of the kissing problem is solved
by direct construction, which gives k(2) = 6.

is—surprisingly—a famously difficult problem. No formula exists that supplies
k(N) in the general case: at present, each case must be approached individually.
My objective is, by elementary means, to supply an upper bound on k(N).
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α

Figure 2: Figure used to demonstrate that a kissing circle subtends
a central angle of 60◦.

1. Analytical aspects of the case N= 2. We ask: What central angle σis subtended
by a kissing circle? From Figure 2 is becomes obvious that

σ = 2α with α = arcsin 1
2 = 1

6π (1)

which supplies
σ = 2π

6
and from this information we recover k(2) = 6.

2. The case N= 3. The first thing to notice about Figure 3 is that in cross
section it reproduces Figure 2. Our problem therefore is to compute the area
of a spherical cap with the same central semi-angle α as before. The calculation
(see Figure 4) is elementary

spherical cap area C3(α; r) =
∫ α

0

2πr sin θ · r dθ

= 2πr2(1 − cos α) (2.1)

As a check, we have

total surface area S3(r) = C3(π; r) = 4πr2 (2.2)

whence
volume V3(r) =

∫ r

0

S3(ρ) dρ = 4
3πr3 (2.3)

The relevant implication is that

S3(r)
C3(π

6 ; r)
= 4

2 −
√

3
= 14.9282

from which we conclude that
k(3) � 14 (3)
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Figure 3: In three dimensions the problem is to discover what
fraction of the spherical surface is taken up by the cap.

θ

Figure 4: Figure used to compute the area of a spherical cap in
the 3-dimensional case.

3. Hyperspherical essentials. Standardly, one writes
∫ +∞

−∞

∫ +∞

−∞
e−(x2+y2) dxdy =

[ ∫ +∞

−∞
e−x2

dx

]2

=
∫ ∞

0

e−r2
2πr dr

= π

∫ ∞

0

e−u du

= π

to arrive at the statement ∫ +∞

−∞
e−x2

dx =
√

π
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basic to the theory of Gaussian integration. Standing that procedure on its
head, we have

∫
· · ·

∫ +∞

−∞
e−(x2

1+x2
2+···+x2

N ) dx1dx2 · · · dxN =
∫ ∞

0

e−r2
SNrN−1 dr

= SN · 1
2Γ

(
N
2

)
giving

SN (r) = SN · rN−1

=
√

πN

1
2Γ

(
N
2

) rN−1 (4.1)

= surface area of an N -sphere

and

VN (r) =
√

πN

N · 1
2Γ

(
N
2

) rN (4.2)

= volume of an N -sphere

4. The general case. Proceeding in mimicry of (2.1), which can be written

C3(α; r) =
∫ α

0

S2(r sin θ) · rdθ

we expect to have

CN (α; r) =
∫ α

0

SN−1(r sin θ) · rdθ (5)

As a check we look to some low-order cases

C2(α; r) = 2rα

C3(α; r) = 2πr2(1 − cos α)

C4(α; r) = 4πr3( 1
2α − 1

4 sin 2α)

C5(α; r) = 2π2r4( 2
3 − 3

4 cos α + 1
12 cos 3α)

C6(α; r) = 8π2r5( 1
8α − 1

12 cos 2α + 1
96 cos 4α)

...

and verify that in all those cases (and all others that I have asked Mathematica
to check)

CN (π, r) = SN (r)

which is to say: full cap = entire surface.

We are placed thus in position to assert that

k(N) � SN (r)
CN (π

6 , r)
(6)
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from which the r factors cancel, and on which basis I have constructed the
following table:

k(2) � 6
k(3) � 14
k(4) � 34
k(5) � 77
k(6) � 170
k(7) � 368
k(8) � 788
k(9) � 1673

k(10) � 3527
...

k(24) � 89,437,026
...

It seems a little surprising that so much kissing goes (or could go) on in
high dimension, since the hypervolume VN (1) (whence also the hypersurface
area) is well known to approach zero as N ↑ ∞:

V2(1) = 3.1415
V3(1) = 4.1888
V4(1) = 4.9348
V5(1) = 5.2638
V6(1) = 5.1677
V7(1) = 4.7248
V8(1) = 4.0587
V9(1) = 3.2985

V10(1) = 2.5502
...

V24(1) = 0.0019
...

5. Asymptotic approximation. At (6) we achieved a result that can be spelled
out

k(N) �
√

πN

1
2Γ

(
N
2

) ·
[ √

πN−1

1
2Γ

(
N−1

2

)
∫ 1

6 π

0

sinN−2 θ dθ

]–1

=
√

π
Γ

(
N−1

2

)
/Γ

(
N
2

)
1

(N−1)2N−1 Hypergeometric2F1[ 1
2 , N−1

2 , N+1
2 , 1

4 ]
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In Stirling approximation

Γ (z) ∼
√

2π/z (z/e)z

which gives

√
π(N − 1)2N−1Γ

(
N−1

2

)
/Γ

(
N
2

)
∼ 2N

√
1
2Nπe

(
1 − 1

N

)N

∼ 2N
√

1
2Nπ

Discussion of the asymptotics of k(N) hinges, therefore, on the asymptotics of
2F1(a, b; c; z), but this is an intricate business1 into which—for a reason that
will soon emerge—I have no strong motivation to enter.

6. Discussion. My results are certainly not new, and are of little interest in
themselves, but acquire some interest for the surprising light that they cast on
what is presently known about the kissing problem.

Fairly recent scholarship has dredged from the papers of David Gregory
(–) the information that it was on  May  that Gregory and Isaac
Newton (–), while considering an astronomical problem, fell into a
discussion of k(3). Newton asserted—on what grounds? Had he looked into
the matter experimentally? Or was he simply repeating an assertion made by
Kepler in his Six-cornered Snow?—that k(3) = 12, while Gregory was of the
opinion that perhaps k(3) = 13 (which itself seems pretty remarkable, since
our k(3) � 14 leads one to ask how Gregory came to be smart enough to be
so conservative). The point at issue came to be known as “Newton’s thirteen
spheres problem” (why thirteen? Perhaps Newton counted the central sphere,
on grounds that the kissee should be reckoned among the kissers: to be kissed
is to kiss).

Not until  was the value of k(3) definitely established. And not until
the early s did the kissing problem begin to attract lively attention—
an attention that was invigorated by the realization soon thereafter that the
problem had direct relevance to the design of codes for the efficient tranmission
and storage of information, and to the numerical evaluation of N -dimensional
integrals. Upper bounds much more efficient than mine were devised by
H. S. M. Coxeter in  and by P. Delsarte in : both supply k(3) � 13.

By the s it had been established that

k(3) = 12 : compare my k(3) � 14
k(4) = 24 : compare my k(4) � 34

k(8) = 240 : compare my k(8) � 788
k(24) = 196,560 : compare my k(24) � 89,437,026

1 See the reference to G. N. Watson’s bessel function monograph that appears
on page 11 of W. Magnus & F. Oberhettinger, Formulas & Theorems for the
Functions of Mathematical Physics ().
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What strikes me as remarkable is not that my theoretical upper bounds so
grossly over-estimate the facts of the matter but that the facts fall so far short
of my estimates: a lot of space is wasted in high dimension, the population of
kissers becomes loose and progressively more loose as N becomes large. The
kissing problem appears to acquire its difficulty from the circumstance that its
solutions are devoid of crystaline regularity, of pattern: kissing—in more than
two dimensions—is a sloppy business!

Google’s “sphere kissing problem” search produces a great many hits.2 For
an engaging introduction to the problem, see

http://plus.maths.org/issue23/features/kissing/

A definitive source is J. H. Conway & N. J. Sloane, Sphere Packings, Lattices
& Groups (3rd edition ), which provides authoritative accounts not only
of the mathematics but also of its applications. . . to coding theory, to quantum
mehcanics, to string theory, etc.

Specialists in the problem report that some N -values yield much more
easily to analysis than others, and that the case N = 24 is in many respects
“magical.” My own methods are much too crude to provide any hint of that
fact, though they do expose the sense in which the case N = 2 is special.

ADDENDUM: Within brief hours of the time I distributed a copy of this material
to Richard Crandall he responded, in reference to the discussion in §5, that
asymptotically

f(N) ≡ 2F1

(
1
2 , N−1

2 , N+1
2 , 1

4

)
∼

√
4
3

Mathematica supplies f(0) =
√

3
4 , and is happy to provide figures that are
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Figure 5: Graph of 2F1

(
1
2 , N−1

2 , N+1
2 , 1

4

)
. The horizontal lines

mark the values of
√

3/4 and of
√

4/3.

2 “Kissing problem” leads, on the other hand, to a population of hits that is
nearly 38 times larger, but relates to quite another issue!
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consistent with Richard’s assertion, but refuses to assign a value to f(∞) or to
develop f(N) in powers of N –1. I asked Richard how, under those circumstances,
he had proceeded. His methods, as he described them to me, are too pretty to
be allowed simply to evaporate, so I record here an account of them.

By definition (Abramowitz & Stegun, 15.1.1)

2F1(a, b; c ; z) =
∞∑

n=0

(a)n(b)n

(c)n

zn

n!

where

(a)0 ≡ 1
(a)n ≡ Pochhammer[a,n] = a(a + 1)(a + 2) · · · (a + n − 1)

Truncate the series to construct (say)3

2F1(a, b; c ; z) ≡
40∑

n=0

Pochhammer[a,n]Pochhammer[b,n]
Pochhammer[c,n]

zn

n!

and define

f(N) ≡ 2F1

(
1
2 , N−1

2 , N+1
2 , 1

4

)
whence

g(N) ≡ f(N –1)

Leaving g(N)—which would take many (!!) pages to write out—to reside within
the computer’s memory, we command Series[g[n], {n,0,3}] and obtain

g(n) = G0 − G1n + G2n
2 − G3n

3 + · · ·

or again
f(N) = G0 − G1N

−1 + G2N
−2 − G3N

−3 + · · ·
where

G0 = 421899181867037803574013790176444481874464786317
365375409332725729550921208179070754913983135744

and where the higher-order Gs are similarly preposterous ratios. What to do
with such results? Proceeding on the hunch that they are trying to tell us

3 It is my experience that Mathematica becomes confused if one at this point
attempts to use

(a)n ≡ Γ (a + n)
Γ (a)
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something simple, Richard commands N[G0,30] and obtains

G0 = 1.15470053837925152901829753687

which is not simple. But (he has the genius to notice)

(G0)2 = 1.33333333333333333333333327761
≈ 4

3

which is tellingly simple. Similarly

(G1)2 = 0.14814814814814814814814661305

(G2)2 = 0.59259259259259259259234182761

where again the repeating decimals suggest rational numbers. Indeed, from

1000(G1)2 − (G1)2 = 147.9999999999999999999984664

we find (G1)2 ≈ 148/999 = 4/27, and similarly (G2)2 ≈ 592/999 = 16/27.4

The strong implication therefore is that

f(N) ∼
√

4
3 − N−1

√
4
27 + N−2

√
16
27 − · · ·

Richard observes finally that an appeal to (see Abramowitz & Stegun
15.3.4) the identity

2F1(a, b; c ; z) = (1 − z)−a · 2F1

(
a, c − b; c ; z

z−1

)
permits one to write

f(N) =
√

4
3 · 2F1( 1

2 , 1; N+1
2 ;− 1

3 )

=
√

4
3 ·

∞∑
n=0

( 1
2 )n(1)n

(N+1
2 )n

(− 1
3 )n

n!

=
√

4
3 ·

{
1 − 1

3(N + 1)
+ 1

6(N + 1)(1 + N+1
2 )

− 5
36(N + 1)(1 + N+1

2 )(2 + N+1
2 )

+ · · ·
}

from which it becomes clear that in the limit N ↑ ∞ one has

f(∞) =
√

4
3 exactly

4 I am indebted to Darrell Schroeter for reminding me of the method by
which repeating decimals are most efficiently rendered as ratios. Curiously,
Richard’s procedure apparently fails to yield rational numbers in next higher
order , though possibly (doubtfully) it would do so if all prior calculations had
been carried out to higher order and with higher precision.


